ASSESSMENT OF TRENDS IN SOUTH FLORIDA SUB-DAILY RAINFALL

Jayantha Obeysekera¹, Michelle Irizarry-Ortiz², Carolina Maran³, Anupama John² Oscar Guzman¹, Brett D. Johnston², Jenifer Barnes³, Samuel Robles¹

> ¹Florida International University, Miami ²United States Geological Survey, Orlando ³South Florida Water Management District

Web: https://environment.fiu.edu | http://slsc.fiu.edu Facebook: @FIUWater | Twitter: @FIUWater

Is extreme rainfall increasing?

Hurricane Ian-Upper Kissimee

Fort Lauderdale, April 12, 2023

Key Takeaways

- Sub-daily precipitation records in Florida are notably lacking and insufficient to conduct a thorough trend analysis.
- There is an urgent requirement for creating a comprehensive database containing all available sub-daily rainfall data.
- Statistical analyses reveal upward trends in multiple Florida locations.
- ➢The relationship between extreme rainfall and temperature suggests potential instances of super Clausius-Clapeyron scaling in several locations.

Outline

DATA AVAILABILITY: DAILY, 5-15 MIN, SATELLITE TREND ASSESSMENT: STATISTICAL METHODS TEMPERATURE SCALING: CLAUSIUS-CLAPEYRON

data

9 SFWMD stations (circled in red) have > 90% of 15-min rainfall data available per year for at least the last 30 years.

SFWMD stations in Florida (post-merge as in NOAA Atlas 14)

Data

12 NWFWMD stations (circled in red) have > 90% of 5-min rainfall data available per year for at least the last 30 years (all located within Tallahassee).

7 NOAA ISD-Lite (circled in red) have > 90% of 60-min rainfall data available per year for at least the last 30 years (all located at airports).

Poisson Process Model – Trends in frequency

Nonhomgeneous Poisson Process (NHPP)

 $\log(\lambda(t;\beta)) = X^T(t)\beta$

R package: NHPoisson (Cebrian et al. 2015)

$$LL\left(\beta; (t_i)_{i=1}^n\right) = -\sum_{t=1}^T \lambda(t;\beta) + \sum_{i=1}^n \log \lambda(t_i;\beta),$$

 \succ Fixed λ (over time)

- >λ as a function of a single harmonic
 >covB <- f(cos(2 * pi * yday / 365),sin(2 * pi * yday / 365))
- $>\lambda$ as a function of a single harmonic and time (t)
 - covB <- f(cos(2 * pi * yday / 365),sin(2 * pi * yday / 365),tyear-byear)</p>
- Likelihood Ratio Test to determine the significance of the models:
 - ▶p0 = p-value, <u>Fixed</u> vs. <u>Single Harmonic</u>
 - p1 = p values, Single Harmonic vs.
 Single Harmonic+Trend

Daily Trends

30 rain gauge locations

USC00080228

GAMLSS Modeling of 15-min data

- ➢ Generalized Additive Model for Location, Scale and Shape Parameters (GAMLSS)
- $\begin{aligned} &\succ \text{Observations}, y_i, \text{ pdf } \mathbf{f}(y_i | \boldsymbol{\theta}^i), \, \boldsymbol{\theta}^i = (\mu_i, \sigma_i, \nu_i, \tau_i), i = 1, 2, \dots n \end{aligned}$

≻Most general form

$$\boldsymbol{g}_k(\boldsymbol{\theta}_k) = \boldsymbol{\eta}_k = \mathbf{X}_k \boldsymbol{\beta}_k$$

Variable: Number of Counts above a prespecified threshold in the daily maxima series

Counts [dmax > threshold]

Modeled Counts as Poison Distribution with location parameter = f(time) nonstationarity

Temperature Scaling

Deriving the exponential relationship between precipitation and temperature to find the rate of chang (slope) Jones, et. et al. (2010):

 $\geq P_{t+\Delta t} = P_t (1 + \alpha)^{\Delta t}$

- Results in the increase of the water-holding capacity of the atmosphere by ~ 7% for every 1°C (1.8°F) rise in temperature (empirically): Clausius-Clapeyron (CC)
 - > 7% = Super relationship (SCC)
 - > 14% = Double relationship (2CC)

Temperature Scaling (with Dew Point): 15 min. FAWN Data

RESULTS – Alpha Value Totals

Quantile	Alpha < 0.07	0.07 <= Alpha < 0.14	Alpha >= 0.14	All Alpha > 0.07
75.0%	84.62%	15.38%	0.00%	15.38%
90.0%	23.08%	75.00%	3.85%	75.00%
99.0%	7.69%	55.77%	26.92%	82.69%
99.9%	7.69%	55.77%	26.92%	82.69%

Station Percentages by Quantile (52 stations)

SATELLITE & MODEL DATA

IMERG - GPM Integrated Integrated Multi-satellite Retrievals for GPM

Precipitation satellite retrievals, on <u>1/10th degree grid every 30 minutes</u> (We only used every 3 hours to match with GRIDSAT-B1) From June 2000 until December 2021

GRIDSAT Dataset Geostationary IR Channel Brightness Temperature -GridSat B1

Top of the cloud temperatures, (near 11 microns) on <u>0.07 degree grid every 3-hours</u> From January 1981 to December 2020.

CONUS 404

WRF-Based hydro-climate database Temperature, dewpoint at 2 meters, and accumulated grid scale precipitation

Temperature, dewpoint, and precipitation on <u>4 km grid every hour</u> From January 1980 to December 2021.

RESULTS Clausius–Clapeyron Scaling at the surface

RAINFALL INTENSITY

Change in annual average hourly rainfall since 1970

Average hourly rainfall is the total annual rainfall divided by the number of hours with rainfall. Source: RCC-ACIS.org; NCEI Climate at a Glance

